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ABSTRACT 

 

This paper merged together the study of optimal control laws for a pension plan with and without return clause under 

Heston volatility model. An investment model comprising of members’ monthly contributions, return accumulations 

with risk free interest to dead members’ families for the case with return clause and investment in one risk free asset and 

two risky assets is presented. Since the mean variance utility function is time inconsistent, the game theoretic approach is 

used to establish an optimization problem from the extended Hamilton Jacobi Bellman (HJB) equation. Furthermore, the 

optimal control laws for the three assets and the efficient frontier are obtained using variable separation method by 

solving the extended HJB equations. Finally, Numerical simulations were presented to demonstrate the effects of some 

parameters on the optimal control laws with observations that the optimal control law for risk free asset decreases 

continuously with time while that of the risky assets increases continuously with time. 
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INTRODUCTION 

 

In finance, the management of portfolios is a critical issue 

as it concerns investment in assets which are modelled by 

Brownian motions. Due to some degree of randomness in 

modelling the market prices of these assets, the study of 

optimal control laws as it governs investments in financial 

markets has drawn so much attention from researchers all 

over the world and also financial managers from different 

financial institutions such as insurance companies, 

commercial bank, pension fund system etc have equally 

engaged in the study. According to (Antolin et al., 2010) 

the importance of pension fund system in preparing for 

members retirement cannot be over emphasized since it 

gives members the opportunity to plan for their old age. 

Currently, there are two types of pension plan namely; the 

defined benefit (DB) plan (see Delong et al., 2008; Chen 

and Hao, 2013; Josa-Fombellida, 2012) and the defined 

contribution pension plan (DC) (see Devolder et al., 2003; 

Gao, 2008; Akpanibah and Oghenoro, 2018; Akpanibah 

and Osu, 2018). These authors studied the optimal 

investment problems under different assumptions in both 

DB and DC pension funds.  

 

presently, there have been an increase in the study of 

optimal control laws governing investments when pension 

fund managers are mandated to refund the contributions 

of members who lost their life during the accumulation 

phase since members of the scheme are faced with 

mortality risk; as a result of this (He and Liang, 2013) 

studied the optimal control laws for DC pension fund with 

return of premium clause; they assumed the returned fund 

is without interest and the remaining accumulations was 

equally shared among the surviving members. They 

considered investment in one risk free asset and one risky 

asset such that the risky asset was modelled by geometric 

Brownian motion. Sheng and Rong (2014) studied the 

optimal control laws with return clause where they 

considered investment in one risk free asset and a risky 

asset (stock) and assumed the stock market price is 

modelled by Heston volatility model. Osu et al. (2018) 

studied optimization problem with return of premium in a 

DC pension with multiple contributors; in their work, the 

stock market price was driven by constant elasticity of 

variance model (CEV) model. Li et al. (2017) studied 

equilibrium investment strategy for DC pension plan with 

default risk and return of premiums clauses under (CEV) 

model; they considered investments in treasury, stock and 

bond. In a recent study Akpanibah et al. (2020) 

investigated the optimal control law for a DC pension 

plan when the returned contributions are with 

predetermined interest; they considered investment in a 

risk free and a risky asset and assume the risky asset is 

modelled by Heston volatility model.  

 

From the available literatures and to the best of our 

knowledge, no work have been done on optimal control 

laws for a pension plan ‘‘with’’ and ‘‘without’’ return 
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clause that considers investment in a three assets such that 

the stock market price follows the Heston volatility 

model. Also the returned contributions are with risk free 

interest. This is the motivation behind this work.  

 

1. The Investment Model 
 

Consider a market which consist of onerisk-free asset and 

two risky assets; namely stock and loan. Let(Ω,ℱ,𝕡) be a 

complete probability space such that Ω  is a real space 

and 𝕡  a probability measure satisfying the condition 

0 ≤ 𝑡 ≤ 𝑇 . {𝒲𝑠 𝑡 ,𝒲𝑧 𝑡 ,𝒲𝑙 𝑡 ,𝒲𝑚  𝑡 ∶ 𝑡 ≥  0} are 

standard Brownian motions. ℱis the filtration and denotes 

the information generated by the Brownian motions. Also, 

let the financial market be a complete and frictionless 

type and is continuously open over a given time interval 

0≤ 𝑡 ≤ 𝑇 , such that𝑇is the retirement age of pension 

members. 

 

Let 𝑅𝑡 𝑡  denote the price of the risk free asset and the 

price process is driven by 

 𝑑ℛ𝑡 𝑡 = 𝓇1ℛ𝑡 𝑡 𝑑𝑡,ℛ𝑡 0 = 1,  

   (1.1) 

𝒮𝑡 𝑡 denotes the price of the stock which is modelled by 

the Heston’s stochastic volatility as follows 

𝑑𝒮𝑡 𝑡 =

 𝓇1 + ∆1𝒵𝑡 𝑡  𝒮𝑡 𝑡 𝑑𝑡 +  𝒵𝑡 𝑡 𝒮𝑡 𝑡 𝑑𝒲𝓈𝑆𝑡 0 = 𝑠0

 (1.2) 

𝑑𝒵𝑡 𝑡 = 𝒽 ∇ − 𝒵𝑡 𝑑𝑡 + 𝑛1 𝒵𝑡𝑑𝒲𝓏 , 𝒵𝑡 0 = 𝑧0 

    (1.3)  

ℒ𝑡 𝑡 denotes the price of the loan and its price process is 

described as follows 

𝑑ℒ𝑡 𝑡 =  𝓇1 + ∆2 ℒ𝑡 𝑡 𝑑𝑡 + 𝑛2ℒ𝑡 𝑡 𝑑𝒲𝑙 𝑡 +
𝑛3ℒ𝑡 𝑡 𝑑𝒲𝑚 (𝑡)                            (1.4)  

Here 𝓇1 is the predetermined interest rate of the risk free 

asset and 𝒽,∇,∆1,∆2,𝑛1,𝑛2,𝑛3 are positive constants and 

the four Brownian motions are such that  

𝑑𝒲𝓈 𝑡 𝑑𝒲𝓏 = 𝜀,𝑑𝒲𝓈 𝑡 𝑑𝒲𝑙 = 𝑑𝒲𝓈 𝑡 𝑑𝒲𝑚 =
𝑑𝒲𝓏 𝑡 𝑑𝒲𝑙 = 𝑑𝒲𝓏 𝑡 𝑑𝒲𝑚 = 𝑑𝒲𝑙 𝑡 𝑑𝒲𝑚 = 0 , 

where 𝜀 is the correlation coefficient of 𝒲𝓈 𝑡  and 

𝒲𝓏satisfying the condition−1 ≤ 𝜀 ≤ 1. 

Considering the time interval [𝑡, 𝑡 + 𝑖] , the differential 

form associated with the fund size is given as: 

𝒰 𝑡 + 𝑖 =

 
𝒰 𝑡  𝜇1

ℛ𝑡+𝑖 𝑡 

ℛ𝑡
+ 𝜇2

𝒮𝑡+𝑖 𝑡 

𝒮𝑡
+ 𝜇3

ℒ𝑡+𝑖 𝑡 

ℒ𝑡
 +

𝑏(𝑖) − 𝑡𝑏𝑛𝑖𝒳𝑘0+𝑡 − 𝜇1𝒰 𝑡 
ℛ𝑡+𝑖 𝑡 

ℛ𝑡
𝑖𝒳𝑘0+𝑡

 
1

1−𝑖𝒳𝑘0+𝑡

    (1.5) 

𝒰 𝑡 + 𝑖 =

 

 
 
 𝒰 𝑡  

1 + (1 − 𝜇2 − 𝜇3)  
ℛ𝑡+𝑖 𝑡 −ℛ𝑡

ℛ𝑡
 (1 − 𝑖𝒳𝑘0+𝑡)

+𝜇2  
𝒮𝑡+𝑖 𝑡 −𝒮𝑡

𝒮𝑡
 + 𝜇3  

ℒ𝑡+𝑖 𝑡 −ℒ𝑡

ℒ𝑡
 

 

+𝑏𝑖 − 𝑡𝑏𝑛𝑖𝒳𝑘0+𝑡

−(1 − 𝜇2 − 𝜇3)𝑛𝒰 𝑡 𝑖𝒳𝑘0+𝑡  

 
 
 
 1 +

𝑖𝒳𝑘0+𝑡1−𝑖𝒳𝑘0+𝑡  (1.6) 

Where𝜇1 ,𝜇2 , and 𝜇3 are the fractions of the members 

wealth to be invested in cash, stock and loan respectively 

such that 𝜇1 = 1 − 𝜇2 − 𝜇3 , 𝑏  is the members’ 

contributions received by the pension fund at any given 

time, 𝑘0, the initial age of accumulation phase, 𝑇, the time 

frame of the accumulation period such that 𝑘0 + 𝑇 is the 

end age. 𝑖𝒳𝑘0+𝑡 is the mortality rate from time 𝑡to 𝑡 + 𝑖, 

𝑏𝑡 is the accumulated contributions at time𝑡, 𝑡𝑏𝑛𝑖𝒳𝑘0+𝑡  

and 𝜇1𝑛𝒰 𝑡 
ℛ𝑡+𝑖 𝑡 

ℛ𝑡
𝑖𝒳𝑘0+𝑡 aretheaccumulated 

contributions and risk free interest paid to the death 

members’ family such that if 𝑛 = 0, there is no return of 

contribution and if 𝑛 = 1, there is return of contribution. 

Following (He and Liang, 2013), we have 

𝑖𝒳𝑘0+𝑡 = 1 − exp{− 𝑣 𝑘0 + 𝑡 + ℎ 𝑑ℎ}
𝑖

0

≈ 𝑣 𝑘0 + 𝑡 𝑖 + 𝑂(𝑖) 

𝑖𝒳𝑘0+𝑡

1−𝑖𝒳𝑘0+𝑡
=  

1−exp {− 𝑣 𝜗0+𝑡+ℎ 𝑑ℎ }
𝑖

0

exp {− 𝑣 𝜗0+𝑡+ℎ 𝑑ℎ}
𝑖

0

= exp{ 𝑣 𝑘0 + 𝑡 +
𝑖

0

ℎ𝑑ℎ}−1≈𝑣𝑘0+𝑡𝑖+𝑂(𝑖)   

As 𝑖 → 0 , 
𝑖𝒳𝑘0+𝑡

1−𝑖𝒳𝑘0+𝑡
= 𝑣 𝑘0 + 𝑡 𝑑𝑡 , 𝑖𝒳𝑘0+𝑡 =

𝑣 𝑘0 + 𝑡 𝑑𝑡𝑏𝑖 → 𝑏𝑑𝑡 , 
ℛ𝑡+𝑖 𝑡 −ℛ𝑡

ℛ𝑡
→

𝑑ℛ𝑡 𝑡 

ℛ𝑡  𝑡 
,  

𝒮𝑡+𝑖 𝑡 −𝒮𝑡

𝒮𝑡
→

𝑑𝒮𝑡  𝑡 

𝒮𝑡 𝑡 
, 
ℒ𝑡+𝑖 𝑡 −ℒ𝑡

ℒ𝑡
→

𝑑ℒ𝑡  𝑡 

ℒ𝑡  𝑡 
  (1.7) 

 

 

From  (1.1), (1.2), (1.3) and (1.7), (1.6) becomes 

 

𝑑𝒰 𝑡 =

 

 
 
 
 
 
 
 

 
  
 

  
 

𝒰 𝑡 

 

 
 

𝜇2  ∆1𝒵(t) +
1

𝑘−𝑘0−𝑡
 

+𝜇3(∆2 +
1

𝑘−𝑘0−𝑡
) + 𝓇1

 1 − 𝑛 
1

𝑘−𝑘0−𝑡  

 
 

+𝑏  
𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
  

  
 

  
 

𝑑𝑡 +

𝒰 𝑡  
𝜇3 𝑛2𝑑𝒲𝑙 + 𝑛3𝑑𝒲𝑚  

+𝜇2 𝒵 𝑡 𝑑𝒲𝓈

 
 

 
 
 
 
 
 
 

𝒰 0 = 𝓊0    (1.8) 
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Where 𝑘 is the maximal age of the life table and 𝑣 𝑡 is the force function given by 

𝑣 𝑡 =
1

𝑘 − 𝑡
,        0 ≤ 𝑡 < 𝑘 

 

2. Mean-Variance Utility and Extended HJB equation      
 

Consider a pension fund manager whose interest is to maximize his profit while penalising risk by using the mean-

varianceutility function given as  

ℳ(𝑡,𝑢, 𝓏) = sup𝜇  𝐸𝑡 ,𝑢 ,𝓏𝒰
𝜇  𝑇 − 𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏𝒰

𝜇  𝑇         (2.1) 

Applying the game theoretic method described in Björk and Murgoci (2010) the mean-variance control problem in (2.1) 

is similar to the following Markovian time inconsistent stochastic optimal control problem with value function 

ℳ(𝑡,𝑢, 𝓏). 

 
 
 

 
 𝒥 𝑡,𝑢, 𝓏, 𝜇 = 𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ] −

𝛾

2
𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ]

𝒥 𝑡,𝑢, 𝓏, 𝜇  = 𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ] −
𝛾

2
 𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 2 − (𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ])2)

ℳ 𝑡,𝑢, 𝓏  = sup
𝜇
𝒥 𝑡,𝑢, 𝓏, 𝜇 

  

From Björk and Murgoci(2010) the optimal portfolio policy 𝜇∗ satisfies: 

ℳ(𝑡,𝑢, 𝓏) = sup
𝜇
𝒥 𝑡,𝑢, 𝓏, 𝜇∗  

𝛾is a constant representing risk aversion coefficient of the members. 

Let  𝑝𝜇  𝑡,𝑢, 𝓏 = 𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ], 𝑞𝜇 𝑡,𝑢, 𝓏 = 𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 2]  then 

ℳ(𝑡,𝑢, 𝓏)     = sup
𝜇
ℯ 𝑡,𝑢, 𝓏, 𝑝𝜇  𝑡,𝑢, 𝓏 , 𝑞𝜇 𝑡,𝑢, 𝓏   

Where, 

ℯ 𝑡,𝑢, 𝓏, 𝑝, 𝑞 = 𝑝 −
𝛾

2
(𝑞 − 𝑝2)         (2.2) 

 

Theorem 4.5.1 (verification theorem). If there exist three real functions ℰ,ℱ,Ⅎ ∶  0,𝑇 × 𝑅 → 𝑅  satisfying the 

following extended Hamilton Jacobi Bellman equation equations: 

 

 
 
 
 
 

 
 
 
 

sup
𝜇

 
 
 
 
 

 
 
 
 

ℰ𝑡 − ℯ𝑡

+  𝑢  
𝓇1 +  1 − 𝑛 

1

𝑘−𝑘0−𝑡
+ 𝜇2  ∆1𝒵(t) +

1

𝑘−𝑘0−𝑡
 

+𝜇3(∆2 +
1

𝑘−𝑘0−𝑡
) + 𝑏  

𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
 

 + 𝑏  
𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
   ℰ𝑢 − ℯ𝑢 

+𝒽 ∇ − 𝓏  ℰ𝓏 − ℯ𝓏 

+
1

2
𝑢2 𝜇2

2𝓏 + 𝜇3
2 𝑛2

2 + 𝑛3
2   ℰ𝑢𝑢 −𝒜𝑢𝑢  

+
1

2
𝑛1

2𝓏 ℰ𝓏𝓏 −𝒜𝓏𝓏 + (𝑢𝜀𝓏𝑛1𝜇2) ℰ𝑢𝓏 −𝒜𝑢𝓏  
 
 
 
 

 
 
 
 

ℰ 𝑇,𝑢, 𝓏 =  ℯ 𝑡,𝑢, 𝓏,𝑢2 

 = 0  (2.3) 

Where, 

 
𝒜𝑢𝑢 = ℯ𝑢𝑢 + 2ℯ𝑢𝑝𝑝𝑢 + 2ℯ𝑢𝑞 𝑞𝑢 + ℯ𝑝𝑝𝑝𝑢

2 + 2ℯ𝑝𝑞𝑝𝑢𝑞𝑢 + ℯ𝑞𝑞𝑞𝑢
2 = 𝛾ℱ𝑢

2

𝒜𝓏𝓏 = 𝛾ℱ𝓏
2 ,𝒜𝓏𝑢 = 𝛾ℱ𝑢ℱ𝓏

     (2.4) 

 
 
 
 
 

 
 
 
 

ℱ𝑡

+  𝑢  
𝓇1 +  1 − 𝑛 

1

𝑘−𝑘0−𝑡
+ 𝜇2  ∆1𝒵(t) +

1

𝑘−𝑘0−𝑡
 

+𝜇3(∆2 +
1

𝑘−𝑘0−𝑡
) + 𝑏  

𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
 

 + 𝑏  
𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
  ℱ𝑢

+𝒽 ∇ − 𝓏 ℱ𝓏

+
1

2
𝑢2 𝜇2

2𝓏 + 𝜇3
2 𝑛2

2 + 𝑛3
2  ℱ𝑢𝑢

+
1

2
𝑛1

2𝓏ℱ𝓏𝓏 + (𝑢𝜀𝓏𝑛1𝜇2)ℱ𝑢𝓏  
 
 
 
 

 
 
 
 

= 0

ℱ 𝑇,𝑢, 𝓏 =  𝑢

   (2.5) 
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Ⅎ𝑡

+  𝑢  
𝓇1 +  1 − 𝑛 

1

𝑘−𝑘0−𝑡
+ 𝜇2  ∆1𝒵(t) +

1

𝑘−𝑘0−𝑡
 

+𝜇3(∆2 +
1

𝑘−𝑘0−𝑡
) + 𝑏  

𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
 

 + 𝑏  
𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
  Ⅎ𝑢

+𝒽 ∇ − 𝓏 Ⅎ𝓏

+
1

2
𝑢2 𝜇2

2𝓏 + 𝜇3
2 𝑛2

2 + 𝑛3
2  Ⅎ𝑢𝑢

+
1

2
𝑛1

2𝓏Ⅎ𝓏𝓏 + (𝑢𝜀𝓏𝑛1𝜇2)Ⅎ𝑢𝓏  
 
 
 
 

 
 
 
 

= 0

Ⅎ 𝑇,𝑢, 𝓏 = 𝑢2

   (2.6) 

Then ℳ 𝑡,𝑢, 𝓏 = ℰ 𝑡,𝑢, 𝓏 , 𝑝𝜇
∗

= ℱ 𝑡,𝑢, 𝓏 ,𝑞𝜇
∗

= Ⅎ 𝑡,𝑢, 𝓏 for the optimal control laws𝜇∗. 
Proof: 

The details of the proof can be found in (He and Liang, 2009; Liang and Huang, 2011; Li and Zeng, 2011)  

3. Optimal Control Laws and Efficient Frontier 

 

In this section, we attempt to solve the extended HJB equation in (2.3) and (2.5) for the optimal control laws of the three 

assets and also the efficient frontier. 

 

Proposition 3.1 

 

The optimal control laws for the three assets are given as 

𝜇1
∗ = 1 −

 
 
 
 
∆1𝑒

𝓇1(𝑡−𝑇)

𝛾𝑢 (𝒽+𝜀𝑛1∆1)
 
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 

1−𝑛

 𝒽 + 𝜀𝑛1∆1𝑒
 𝒽+𝜀𝑛1∆1  𝑡−𝑇 +

1

𝓏
 

1

𝑘−𝑘0−𝑡
  

+
𝑒𝓇1 𝑡−𝑇 

𝛾𝑢 (𝑛2
2+𝑛3

2)
 
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 

1−𝑛

 ∆2 +  
1

𝑘−𝑘0−𝑡
  

 
 
 
 

    (3.1) 

𝜇2
∗ =

∆1𝑒
𝓇1(𝑡−𝑇)

𝛾𝑢 (𝒽+𝜀𝑛1∆1)
 
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 

1−𝑛

 𝒽 + 𝜀𝑛1∆1𝑒
 𝒽+𝜀𝑛1∆1  𝑡−𝑇 +

1

𝓏
 

1

𝑘−𝑘0−𝑡
      (3.2) 

𝜇3
∗ =

𝑒𝓇1 𝑡−𝑇 

𝛾𝑢 (𝑛2
2+𝑛3

2)
 
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 

1−𝑛

 ∆2 +  
1

𝑘−𝑘0−𝑡
         (3.3) 

 

Proof 

From (2.2), 

ℯ𝑡 = ℯ𝑢 = ℯ𝓏 = ℯ𝑢𝑢 =ℯ𝓏𝓏 = ℯ𝑢𝓏 = ℯ𝑝𝓏 = ℯ𝑞𝓏 =  ℯ𝑢𝑝 = ℯ𝑢𝑞 = ℯ𝑝𝑞 = ℯ𝑞𝑞 = 0, ℯ𝑝 = 1 + 𝛾𝑝, 

ℯ𝑝𝑝 = 𝛾, ℯ𝑞 = −
𝛾

2
          (3.4) 

Substituting (3.4) into (2.3) and differentiating it with respect to 𝜇2and 𝜇3, and solving for 𝜇2 and 𝜇3,  we have: 

𝜇2
∗ = − 

(∆1𝓏+
1

𝑘−𝑘0−𝑡
)ℯ𝑢+ ℰ𝑢𝓏−𝛾ℱ𝑢ℱ𝓏 𝜀𝑛1

𝓏𝑢 ℰ𝑢𝑢 −𝛾ℱ𝑢
2 

         (3.5) 

𝜇3
∗ = − 

(∆2+
1

𝑘−𝑘0−𝑡
)ℯ𝑢

𝑢  ℰ𝑢𝑢 −𝛾ℱ𝑢
2  (𝑛2

2+𝑛3
2)
          (3.6) 

 

Substituting (4.5) and (4.6) into (3.3) and (3.5) we have 

ℰ𝑡 +   𝓇1 +  1 − 𝑛 
1

𝑘−𝑘0−𝑡
 𝑢 + 𝑏  

𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
  ℰ𝑢 + 𝒽 ∇ − 𝓏 ℰ𝓏 +

1

2
 ℰ𝓏𝓏 − 𝛾ℱ𝓏

2 𝑛1
2𝓏

−
1

2

ℰ𝑢
2

 ℰ𝑢𝑢 −𝛾ℱ𝑢
2 
 
 ∆1𝓏+

1

𝑘−𝑘0−𝑡
 

2

𝓏
+

 ∆2+
1

𝑘−𝑘0−𝑡
 

2

 𝑛2
2+𝑛3

2 
 −

1

2

 ℰ𝑢𝓏−𝛾ℱ𝑢ℱ𝓏 
2

 ℰ𝑢𝑢 −𝛾ℱ𝑢
2 

𝜀2𝑛1
2 = 0

  (3.7) 
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ℱ𝑡

+   𝓇1 +  1 − 𝑛 
1

𝑘−𝑘0−𝑡
 𝑢 + 𝑏  

𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
  ℱ𝑢 + 𝒽 ∇ − 𝓏 ℱ𝓏

+
1

2
𝑛1

2𝓏ℱ𝓏𝓏 −
ℰ𝑢ℱ𝑢

 ℰ𝑢𝑢 −𝛾ℱ𝑢
2 
 
 ∆1𝓏+

1

𝑘−𝑘0−𝑡
 

2

𝓏
+

 ∆2+
1

𝑘−𝑘0−𝑡
 

2

 𝑛2
2+𝑛3

2 
 

−
ℱ𝑢  ℰ𝑢𝓏−𝛾ℱ𝑢ℱ𝓏 

 ℰ𝑢𝑢 −𝛾ℱ𝑢
2 

 ∆1𝓏 +
1

𝑘−𝑘0−𝑡
 𝜀𝑛1

+
1

2

 

 
 
𝓏  

 ∆1𝓏+
1

𝑘−𝑘0−𝑡
 ℯ𝑢+ ℰ𝑢𝓏−𝛾ℱ𝑢ℱ𝓏 𝜀𝑛1

𝓏 ℰ𝑢𝑢 −𝛾ℱ𝑢
2 

 

2

+ 𝑛2
2 + 𝑛3

2  
(∆2+

1

𝑘−𝑘0−𝑡
)ℯ𝑢

 ℰ𝑢𝑢 −𝛾ℱ𝑢
2  𝑛2

2+𝑛3
2 
 

2

 

 
 
ℱ𝓏𝑢

+𝜀𝑛1  
 ∆1𝓏+

1

𝑘−𝑘0−𝑡
 ℯ𝑢+ ℰ𝑢𝓏−𝛾ℱ𝑢ℱ𝓏 𝜀𝑛1

 ℰ𝑢𝑢 −𝛾ℱ𝑢
2 

 ℱ𝑢 = 0

     (3.8) 

Next, we assume a solution for ℰ 𝑡,𝑢, 𝓏  and ℱ 𝑡,𝑢, 𝓏  as follows: 

 
  
 

  
 ℰ 𝑡,𝑢, 𝓏 = 𝑢ℬ1 𝑡 +

𝓏

𝛾
ℬ2 𝑡 +

1

𝛾
ℬ3 𝑡 , ℬ1 𝑇 = 1, ℬ2 𝑇 = 0, ℬ3 𝑇 = 0

ℱ 𝑡,𝑢, 𝓏 = 𝑢𝒞1 𝑡 +
𝓏

𝛾
𝒞2 𝑡 +

1

𝛾
𝒞3 𝑡 ,𝒞1 𝑇 = 1, 𝒞2 𝑇 = 0, 𝒞3 𝑇 = 0

ℰ𝑡 = 𝑢
𝑑ℬ1 𝑡 

𝑑𝑡
+

𝓏

𝛾

𝑑ℬ2 𝑡 

𝑑𝑡
+

1

𝛾

𝑑ℬ3 𝑡 

𝑑𝑡
,ℰ𝑢 = ℬ1 𝑡 ,ℰ𝑢𝑢 = 0,ℰ𝓏 =

1

𝛾
ℬ2 𝑡 ,ℰ𝓏𝓏 = 0

ℱ𝑡 = 𝑢
𝑑𝒞1 𝑡 

𝑑𝑡
+

𝓏

𝛾

𝑑𝒞2 𝑡 

𝑑𝑡
+

1

𝛾

𝑑𝒞3 𝑡 

𝑑𝑡
,ℱ𝑢 = 𝒞1 𝑡 ,ℱ𝑢𝑢 = 0,ℱ𝓏 =

1

𝛾
𝒞2 𝑡 ,ℱ𝓏𝓏 = 0

     (3.9) 

Substituting (4.9) into (4.7) and (4.8), we have 

 
 
 
 
 

 
 
 
 

𝑑ℬ1 𝑡 

𝑑𝑡
+  𝓇1 +  1 − 𝑛 

1

𝑘−𝑘0−𝑡
 ℬ1 𝑡 = 0   ,ℬ1 𝑇 = 1

𝑑ℬ2 𝑡 

𝑑𝑡
− 𝒽ℬ2 +

(𝜀2−1)𝑛1
2𝒞2

2

2
+

∆1
2ℬ1

2

2𝒞1
2 −

𝜀𝑛1∆1ℬ1𝒞2

𝒞1
= 0  ,   ℬ2 𝑇 = 0

𝑑ℬ3 𝑡 

𝑑𝑡
+ 𝒽∇ℬ2 + ℬ1𝑏𝛾  

𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
 +

 ∆2+
1

𝑘−𝑘0−𝑡
 

2
ℬ1𝒞1

(𝑛2
2+𝑛3

2)𝒞1
2

− 
1

𝑘−𝑘0−𝑡
 𝜀𝑛1∆1𝒞1 +  

1

𝑘−𝑘0−𝑡
 ∆1

ℬ1
2

𝒞1
2 +

1

2

 
1

𝑘−𝑘0−𝑡
 

2
ℬ1

2

𝓏𝒞1
2 = 0,        ℬ3 𝑇 = 0

     (3.10) 

 
 
 
 
 

 
 
 
 

𝑑𝒞1 𝑡 

𝑑𝑡
+  𝓇1 +  1 − 𝑛 

1

𝑘−𝑘0−𝑡
 𝒞1 𝑡 = 0        ,𝒞1 𝑇 = 1

𝑑𝒞2 𝑡 

𝑑𝑡
− 𝒽𝒞2 +

∆1
2ℬ1

𝒞1
−

𝜀𝑛1∆1ℬ1𝒞2

𝒞1
= 0,        𝒞2 𝑇 = 0

𝑑𝒞3 𝑡 

𝑑𝑡
+ 𝒽∇𝒞2 + 𝒞1𝑏𝛾  

𝑘−𝑘0−(1+𝑛)𝑡

𝑘−𝑘0−𝑡
 +

 ∆2+
1

𝑘−𝑘0−𝑡
 

2
ℬ1𝒞1

2(𝑛2
2+𝑛3

2)𝒞1
2

− 
1

𝑘−𝑘0−𝑡
 𝜀𝑛1∆1𝒞2 + 2  

1

𝑘−𝑘0−𝑡
 ∆1

ℬ1𝒞1

𝒞1
2 +

1

2

 
1

𝑘−𝑘0−𝑡
 

2
ℬ1𝒞1

𝓏𝒞1
2 = 0,        𝒞3 𝑇 = 0

     (3.11) 

Solving (3.10) and (3.11), we have 

ℬ1 𝑡 = 𝑒𝓇1(𝑇−𝑡)  
𝑘 − 𝑘0 − 𝑇

𝑘 − 𝑘0 − 𝑡
 
𝑛−1

 

𝒞1 𝑡 = 𝑒𝓇1(𝑇−𝑡)  
𝑘 − 𝑘0 − 𝑇

𝑘 − 𝑘0 − 𝑡
 
𝑛−1
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ℬ2 𝑡 =

 

 
 
 
 
 
 
 
 
 

𝜀𝑛1∆1
3

𝒽 + 𝜀𝑛1∆1

 
 

 
1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
1

𝜀𝑛1∆1

(𝑒𝒽 𝑡−𝑇 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 )
 
 

 

+
∆1

2

2𝒽
 1 − 𝑒𝒽 𝑡−𝑇  +

𝑛1
2∆1

3 𝜀2 − 1 

2 𝒽 + 𝜀𝑛1∆1 
2

 
  
 

  
 

1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
2𝑒𝒽 𝑡−𝑇 

𝜀𝜎1𝑘1

 1 − 𝑒𝜀𝑛1∆1 𝑡−𝑇  +

𝑒𝒽 𝑡−𝑇 

𝒽 + 2𝜀𝑛1∆1

 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 − 1 
 
  
 

  
 

 

 
 
 
 
 
 
 
 
 

 

𝒞2 𝑡 =
∆1

2

𝒽 + 𝜀𝑛1∆1

 1 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇   

ℬ3 𝑡 =

 

 
 
 
 
 
 
 −𝒽∇ ℬ2 𝜏 

𝑇

𝑡

𝑑𝜏 + 𝑏𝛾 𝒞1 𝜏  
𝑘 − 𝑘0 −  1 + 𝑛 𝜏

𝑘 − 𝑘0 − 𝜏
 

𝑇

𝑡

𝑑𝜏

+

 

 
 
 
 

∆1

+
∆2

2 + 2∆2

2 𝑛2
2 + 𝑛3

2 

+
 

1

 𝑛2
2+𝑛3

2 
+

1

𝓏
 

2 𝑘 − 𝑘0 − 𝑡  𝑘 − 𝑘0 − 𝑇  

 
 
 
 

 𝑇 − 𝑡 

 

 
 
 
 
 
 
 

 

𝒞3 𝑡 =

 

 
 
 
 
 
 −𝒽∇ 𝒞2 𝜏 

𝑇

𝑡

𝑑𝜏 + 𝑏𝛾 𝒞1 𝜏  
𝑘 − 𝑘0 −  1 + 𝑛 𝜏

𝑘 − 𝑘0 − 𝜏
 

𝑇

𝑡

𝑑𝜏

+

 

  
 

∆2
2 + 2∆2

2 𝑛2
2 + 𝑛3

2 

+
 

1

 𝑛2
2+𝑛3

2 
+

1

𝓏
 

2 𝑘 − 𝑘0 −  𝑘 − 𝑘0 − 𝑇  

  
 
 𝑇 − 𝑡 +  2∆1 −

∆1
2

𝒽 + 𝜀𝑛1∆1

 𝑙𝑛  
𝑘 − 𝑘0 − 𝑇

𝑘 − 𝑘0 − 𝑡
 

 

 
 
 
 
 
 

 

ℰ 𝑡,𝑢, 𝓏 =

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑢𝑒𝓇1 𝑇−𝑡  
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 
𝑛−1

+
𝓏

𝛾

 

 
 
 
 
 
 

𝜀𝑛1∆1
3

𝒽+𝜀𝑛1∆1
 

1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
1

𝜀𝑛1∆1
(𝑒𝒽 𝑡−𝑇 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 )

 

+
∆1

2

2𝒽
 1 − 𝑒𝒽 𝑡−𝑇  +

𝑛1
2∆1

3 𝜀2−1 

2 𝒽+𝜀𝑛1∆1 
2

 
 
 

 
 

1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
2𝑒𝒽 𝑡−𝑇 

𝜀𝜎1𝑘1
 1 − 𝑒𝜀𝑛1∆1 𝑡−𝑇  +

𝑒𝒽 𝑡−𝑇 

𝒽+2𝜀𝑛1∆1
 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 − 1  

 
 

 
 

 

 
 
 
 
 
 

+
1

𝛾

 

 
 
 
 
 

−𝒽∇ ℬ2 𝜏 
𝑇

𝑡
𝑑𝜏 + 𝑏𝛾  𝒞1 𝜏  

𝑘−𝑘0− 1+𝑛 𝜏

𝑘−𝑘0−𝜏
 

𝑇

𝑡
𝑑𝜏

+

 

  
 

∆1

+
∆2

2+2∆2

2 𝑛2
2+𝑛3

2 

+
 

1

 𝑛2
2+𝑛3

2 
+

1

𝓏
 

2 𝑘−𝑘0−𝑡  𝑘−𝑘0−𝑇  

  
 
 𝑇 − 𝑡 

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (3.12) 
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ℱ 𝑡,𝑢, 𝓏 =

 

 
 
 
 
 
 
 
 

𝑢𝑒𝓇1 𝑇−𝑡  
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 
𝑛−1

+
𝓏

𝛾
 

∆1
2

𝒽+𝜀𝑛1∆1
 1 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇   

+
1

𝛾

 

 
 
 
 

−𝒽∇ 𝒞2 𝜏 
𝑇

𝑡
𝑑𝜏 + 𝑏𝛾  𝒞1 𝜏  

𝑘−𝑘0− 1+𝑛 𝜏

𝑘−𝑘0−𝜏
 

𝑇

𝑡
𝑑𝜏

+

 

 
 

∆2
2+2∆2

2 𝑛2
2+𝑛3

2 

+
 

1

 𝑛2
2+𝑛3

2 
+

1

𝓏
 

2 𝑘−𝑘0−𝑡  𝑘−𝑘0−𝑇  

 
 
 𝑇 − 𝑡 +  2∆1 −

∆1
2

𝒽+𝜀𝑛1∆1
 𝑙𝑛  

𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 

 

 
 
 
 

 

 
 
 
 
 
 
 
 

  (3.13) 

Substituting ℰ𝑢 = ℬ1 𝑡  ,ℱ𝑢 = 𝒞1 𝑡 , ℰ𝑢𝑢 = 0, and ,ℱ𝓏 =
1

𝛾
𝒞2 𝑡  into (3.5) and (3.6) we obtain (3.1), (3.2) and (3.3). 

 

Proposition 3.2 

 

The efficient frontier of the pension members is given by 

𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ] =

 

 
 
 
 
 
 
 
 
 

𝑢𝑒𝓇1 𝑇−𝑡  
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 
𝑛−1

+ 𝑏  𝒞1 𝜏  
𝑘−𝑘0− 1+𝑛 𝜏

𝑘−𝑘0−𝜏
 

𝑇

𝑡
𝑑𝜏

+ 
𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ]

𝐽  𝑡 

 

 
 
 
 
 
 
 

𝓏  
∆1

2

𝒽+𝜀𝑛1∆1
 1 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇   

−𝒽∇ 𝒞2 𝜏 
𝑇

𝑡
𝑑𝜏 +

 

 
 

∆2
2+2∆2

2 𝑛2
2+𝑛3

2 

+
 

1

 𝑛2
2+𝑛3

2 
+

1

𝓏
 

2 𝑘−𝑘0−  𝑘−𝑘0−𝑇  

 
 
 𝑇 − 𝑡 

+  2∆1 −
∆1

2

𝒽+𝜀𝑛1∆1
 𝑙𝑛  

𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
  

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

  (3.14) 

Proof 

𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏[𝒰𝜇 ∗ 𝑇 ] = 𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 2] − (𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ])2 =
2

𝛾
 ℱ 𝑡,𝑢,𝓏 − ℰ 𝑡,𝑢, 𝓏   

𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏[𝒰𝜇 ∗ 𝑇 ] =
1

𝛾2

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
2𝓏∆1

2

𝒽+𝜀𝑛1∆1
 1 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇   

−𝓏

 

 
 
 
 
 
 
 
 

2𝜀𝑛1∆1
3

𝒽+𝜀𝑛1∆1
 

1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
1

𝜀𝑛1∆1
(𝑒𝒽 𝑡−𝑇 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 )

 

+
∆1

2

𝒽
 1 − 𝑒𝒽 𝑡−𝑇  

+
𝑛1

2∆1
3 𝜀2−1 

 𝒽+𝜀𝑛1∆1 
2

 
 
 

 
 

1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
2𝑒𝒽 𝑡−𝑇 

𝜀𝜎1𝑘1
 1 − 𝑒𝜀𝑛1∆1 𝑡−𝑇  +

𝑒𝒽 𝑡−𝑇 

𝒽+2𝜀𝑛1∆1
 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 − 1  

 
 

 
 

 

 
 
 
 
 
 
 
 

+ 2𝒽∇  ℬ2 𝜏 
𝑇

𝑡
𝑑𝜏 −  𝒞2 𝜏 

𝑇

𝑡
𝑑𝜏 +  2∆1 −

∆1
2

𝒽+𝜀𝑛1∆1
 𝑙𝑛  

𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 

2

− 2∆1 𝑇 − 𝑡  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

            (3.15) 

𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏[𝒰𝜇 ∗ 𝑇 ] =
1

𝛾2
𝐽(𝑡) 

Where 
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𝒯 𝑡 =

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2𝓏∆1

2

𝒽 + 𝜀𝑛1∆1

 1 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇   

−𝓏

 

 
 
 
 
 
 
 
 
 
 
 

2𝜀𝑛1∆1
3

𝒽 + 𝜀𝑛1∆1

 
 

 
1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
1

𝜀𝑛1∆1

(𝑒𝒽 𝑡−𝑇 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 )
 
 

 

+
∆1

2

𝒽
 1 − 𝑒𝒽 𝑡−𝑇  

+
𝑛1

2∆1
3 𝜀2 − 1 

 𝒽 + 𝜀𝑛1∆1 
2

 
  
 

  
 

1

𝒽
 𝑒𝒽 𝑡−𝑇 − 1 

+
2𝑒𝒽 𝑡−𝑇 

𝜀𝜎1𝑘1

 1 − 𝑒𝜀𝑛1∆1 𝑡−𝑇  +

𝑒𝒽 𝑡−𝑇 

𝒽 + 2𝜀𝑛1∆1

 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇 − 1 
 
  
 

  
 

 

 
 
 
 
 
 
 
 
 
 
 

+ 2𝒽∇  ℬ2 𝜏 

𝑇

𝑡

𝑑𝜏 −  𝒞2 𝜏 

𝑇

𝑡

𝑑𝜏 +  2∆1 −
∆1

2

𝒽 + 𝜀𝑛1∆1

 𝑙𝑛  
𝑘 − 𝑘0 − 𝑇

𝑘 − 𝑘0 − 𝑡
 

2

− 2∆1 𝑇 − 𝑡  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1

𝛾
=

 𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏[𝒰𝜇 ∗ 𝑇 

 𝒯(𝑡)
          (3.16) 

𝐸𝑡 ,𝑢 ,𝓏[𝑍𝜇
∗
 𝑇 ] =

 

 
 
 
 
 
 
 
 

𝑢𝑒𝓇1 𝑇−𝑡  
𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 
𝑛−1

+
𝓏

𝛾
 

∆1
2

𝒽+𝜀𝑛1∆1
 1 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇   

+
1

𝛾

 

 
 
 
 

−𝒽∇ 𝒞2 𝜏 
𝑇

𝑡
𝑑𝜏 + 𝑏𝛾  𝒞1 𝜏  

𝑘−𝑘0− 1+𝑛 𝜏

𝑘−𝑘0−𝜏
 

𝑇

𝑡
𝑑𝜏

+

 

 
 

∆2
2+2∆2

2 𝑛2
2+𝑛3

2 

+
 

1

 𝑛2
2+𝑛3

2 
+

1

𝓏
 

2 𝑘−𝑘0−𝑡  𝑘−𝑘0−𝑇  

 
 
 𝑇 − 𝑡 +  2∆1 −

∆1
2

𝒽+𝜀𝑛1∆1
 𝑙𝑛  

𝑘−𝑘0−𝑇

𝑘−𝑘0−𝑡
 

 

 
 
 
 

 

 
 
 
 
 
 
 
 

  (3.17) 

Substituting (3.16) in (3.17), we have 

𝐸𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ] =

 

 
 
 
 
 
 
 
 
 
 
 𝑢𝑒𝓇1 𝑇−𝑡  

𝑘 − 𝑘0 − 𝑇

𝑘 − 𝑘0 − 𝑡
 
𝑛−1

+ 𝑏 𝒞1 𝜏  
𝑘 − 𝑘0 −  1 + 𝑛 𝜏

𝑘 − 𝑘0 − 𝜏
 

𝑇

𝑡

𝑑𝜏

+ 
𝑉𝑎𝑟𝑡 ,𝑢 ,𝓏[𝒰𝜇  𝑇 ]

𝒯 𝑡 

 

 
 
 
 
 
 
 
 

𝓏  
∆1

2

𝒽 + 𝜀𝑛1∆1

 1 − 𝑒 𝒽+𝜀𝑛1∆1  𝑡−𝑇   

−𝒽∇ 𝒞2 𝜏 

𝑇

𝑡

𝑑𝜏 +

 

  
 

∆2
2 + 2∆2

2 𝑛2
2 + 𝑛3

2 

+
 

1

 𝑛2
2+𝑛3

2 
+

1

𝓏
 

2 𝑘 − 𝑘0 −  𝑘 − 𝑘0 − 𝑇  

  
 
 𝑇 − 𝑡 

+ 2∆1 −
∆1

2

𝒽 + 𝜀𝑛1∆1

 𝑙𝑛  
𝑘 − 𝑘0 − 𝑇

𝑘 − 𝑘0 − 𝑡
 

 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

Remark 3.1: If 𝑛 = 1,  the optimal control laws for the three assets in (3.1), (3.2) and (3.3) reduces to a case when there 

is return of contributions as follows 

 



Akpanibah and Osu 4943 

𝜇1
∗ = 1 −

 
 
 
 
∆1𝑒

𝓇1(𝑡−𝑇)

𝛾𝑢 (𝒽+𝜀𝑛1∆1)
 𝒽 + 𝜀𝑛1∆1𝑒

 𝒽+𝜀𝑛1∆1  𝑡−𝑇 +
1

𝓏
 

1

𝑘−𝑘0−𝑡
  

+
𝑒𝓇1 𝑡−𝑇 

𝛾𝑢 (𝑛2
2+𝑛3

2)
 ∆2 +  

1

𝑘−𝑘0−𝑡
  

 
 
 
 

    (3.18) 

𝜇2
∗ =

∆1𝑒
𝓇1(𝑡−𝑇)

𝛾𝑢 (𝒽+𝜀𝑛1∆1)
 𝒽 + 𝜀𝑛1∆1𝑒

 𝒽+𝜀𝑛1∆1  𝑡−𝑇 +
1

𝓏
 

1

𝑘−𝑘0−𝑡
       (3.19) 

𝜇3
∗ =

𝑒𝓇1 𝑡−𝑇 

𝛾𝑢 (𝑛2
2+𝑛3

2)
 ∆2 +  

1

𝑘−𝑘0−𝑡
          (3.20) 

 

4. Numerical Simulations 

 

In this section, we present some numerical results of the optimal control law with return of premium using the following 

parameters unless otherwise stated 𝛾 = 0.5,𝓇1 = 0.03,𝒽 =0.5,𝜀 = 0.3, 𝑛1 = 0.1,𝑛2 = 0.3,𝑛3 = 0.5,∆1 = 0.4,∆2 = 0.5, 

𝓏0 = 0.1 𝑢0= 0.1,𝑇 = 40, 𝑡 = 0:5:25,𝑘 = 100, 𝑘0 = 20. 

 

 

 
Fig. 1. Time evolution of 𝜇1

∗, 𝜇2
∗, and 𝜇3

∗ 

 

 
Fig. 2. Time evolution of 𝜇1

∗  with different 𝛾. 
 

 
Fig. 3. Time evolution of  𝜇1

∗ with different 𝓇1 

 

 
Fig. 4. Time evolution of 𝜇1

∗ with different 𝑢. 
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Fig. 5. Time evolution of the  𝜇2

∗  different 𝛾. 

 

 
Fig. 6. Time evolution of  𝜇2

∗  with different 𝓇1. 

 

 
Fig. 7. Time evolution of 𝜇2

∗ with different 𝑢. 

 

 
Fig. 8. Time evolution of  𝜇3

∗ with different 𝛾. 
 

 
Fig. 9. Time evolution of  𝜇3

∗ with different 𝓇1. 

 

 
Fig. 10. Time evolution of 𝜇3

∗ with different 𝑢. 
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DISCUSSION 

 

In Figure 1, we observed that the optimal control law for 

risk free asset decreases continuously with time while that 

of stock and loan increases continuously with time. From 

Figure 2, 3 and 4, the optimal control law of the risk free 

asset is directly proportional to the risk aversion 

coefficient of the pension members, initial wealth and the 

predetermined interest rate of the risk free asset while in 

Figures 5 and 8, we observed that the optimal control law 

of the risky assets are inversely proportional to risk 

aversion coefficient of the pension members; this implies 

that an investor with high risk aversion coefficient will 

invest less in equity and loan and vice versa. Figure 6 and 

9 shows that the optimal control laws of the risky assets 

are inversely proportional to predetermined interest; the 

implication here is that, as the interest rate of the risk free 

asset increases, there is a decrease in investments in 

equity and loan. In a similar fashion, Figure 7 and 10 

shows that the optimal control laws for the risky assets are 

inversely proportional to the initial wealth the implication 

is that when there sufficiently large amount in the pension 

purse, at the early stages of the investment, the fund 

managers will like to undertake lesser risk when 

compared to cases where initial wealth is small. 

 

CONCLUSION 

 

This work merged together, the study of optimal control 

law for a pension plan with and without return clause 

under Heston volatility model. We presented an 

investment model which takes into considerations 

members’ monthly contributions, return accumulations 

with risk free interest to dead members’ families for the 

case with return clause and investment in three different 

assets. The game theoretic approach was used to establish 

our optimization problem from the extended Hamilton 

Jacobi Bellman (HJB). The variable separation technique 

was used to obtain the optimal control laws for the three 

assets and the efficient frontier by solving the 

optimization problem. Numerical simulations were 

presented to demonstrate the effects of some parameters 

on the optimal control laws with observations that are 

presented with observations that the optimal control law 

for risk free asset decreases continuously with time while 

that of stock and loan increases continuously with time. 
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